Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions

Author:

Kulakov Matvey1ORCID,Frisman Efim1ORCID

Affiliation:

1. Institute of Complex Analysis of Regional Problem FEB RAS, Sholom-Aleikhem St. 4, 679016 Birobidzhan, Russia

Abstract

The inhomogeneous population distribution appears as various population densities or different types of dynamics in distant sites of the extended habitat and may arise due to, for example, the resettlement features, the internal population structure, and the population dynamics synchronization mechanisms between adjacent subpopulations. In this paper, we propose the model of the spatio-temporal dynamics of two-age-structured populations coupled by migration (metapopulation) with long-range displacement. We study mechanisms leading to inhomogeneous spatial distribution as a type of cluster synchronization of population dynamics. To study the spatial patterns and synchronization, we use the method of constructing spatio-temporal profiles and spatial return maps. We found that patterns with spots or stripes are typical spatial structures with synchronous dynamics. In most cases, the spatio-temporal dynamics are mixed with randomly located single populations with strong burst (outbreak) of population size (solitary states). As the coupling parameters decrease, the number of solitary states grows, and they increasingly synchronize and form the clusters of solitary states. As a result, there are the several clusters with different dynamics. The appearance of these spatial patterns most likely occurs due to the multistability of the local age-structured population, leading to the spatio-temporal multistability.

Funder

Russian Academy of Sciences

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference70 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3