Spliceosome inhibitor induces human hematopoietic progenitor cell reprogramming toward stemness

Author:

Dong Liaoliao,Wei Chuijin,Xiong Shumin,Yu Ping,Zhou Ren,Cheng Lin

Abstract

AbstractThe application of hematopoietic stem cells (HSCs) has been restricted due to limited cell sources and conventional methods for generating these cells by cell expansion and pluripotent stem cell differentiation have not been clinically achieved. Cell reprogramming technique provides a new hope for generating desirable cells. We previously reported that mouse differentiated hematopoietic cell reprogramming could be induced by small molecule compounds to generate hematopoietic stem/progenitor-like cells, whether the human hematopoietic cells could also be reprogrammed into HSCs by chemical compounds remains elusive. Here, we demonstrated for the first time that human committed hematopoietic progenitors could be reprogrammed into multipotent progenitors by spliceosome inhibitor. Combination of single cell RNA-sequencing and genetic lineage tracing including exogenous barcodes and endogenous mitochondrial DNA mutations confirmed the reprogramming procession. Although the small chemical compound inhibiting spliceosome function only induces the differentiated hematopoietic progenitors to acquire plasticity and reprograms them into multipotent progenitors but not stem cells so far, this study still provides a proof-of-concept strategy for generating HSCs based on combining two independent steps together in future, first differentiating rare HSCs into large number of progenitors then reprogramming these progenitors into huge number of HSCs. Further dissecting the mechanism underlying spliceosome inhibitor-induced human hematopoietic cell reprogramming in future will help us comprehensively understanding not only the chemical reprogramming to generate desirable human cells for clinical translation but also hematopoiesis under physiological and pathological conditions.

Funder

National Natural Science Foundation of China

Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support

Project from National Research Center for Translational Medicine at Shanghai

Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3