Abstract
Abstract
Background
Climate changes influence the ecosystems and induce potential risks regarding the natural products and services; the human society should predict and adapt in time to these coming global challenges. This research highlights a possible fragmentation of some of the Lower Danube River Basin lentic ecosystems fish populations in a climate change scenario.
Results
The studied climate change potential events will affect 18 fish species of economic interest and eight of conservation interest and will induce disorder in some of the Lower Danube specific type of fish communities. The studied area was identified as a significant hot spot regarding the fish fauna ecological status major hazard, in a possible climate change (heating–drought–water depth decreasing) sequence of potential future events. Primarily the southern lakes of the studied area can be negatively influenced by the decreasing of the lakes water quality and quantity, some of the spawning habitats will vanish, some habitats and species will disappear, suspended sediment and nutrient levels in water will increase, eutrophication phenomenon will increase, the hydrological connectivity will diminish, fish associations’ structure will significantly change, etc.
Conclusions
The climate changes trend in the Lower Danube Basin will affect the studied lakes ecological state and associated fish communities; mitigating measures are urgently needed. The future potential relative isolation of researched lakes by the surrounding hydrographical nets, for safety reasons of human communities or to convert inland areas should be banned specially for the lakes: Balta Domnească, Razelm, Tăbăcărie, Siutghiol, Taşaul, Tatlageac, Sinoe, Potcoava, Snagov, Comana, Victoria Gheormane, Dunărea Veche, Oltina, and Bugeac. Some of the researched lakes should be managed as wetlands of international importance and as important stepping stone areas for the fish fauna of the Danube Basin: Snagov, Comana, Victoria Gheormane, Dunărea Veche, Oltina, and Bugeac.
Funder
Administraţia Naţională “Apele Române”
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302(5651):1719–1723
2. Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am Zool 11(1):99–113
3. Fry PEJ (1971) The effect of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ (eds) Fish physiology: environmental relations and behaviour. Academic Press, New York
4. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 332(5903):690–692
5. Hatton EC, Buckley JD, Fera S, Henry S, Hunt LM, Drake DAR, Johnson TB (2018) Ecological temperature metrics for invasive fishes in Ontario and the Great Lakes Region. Ontario Ministry of Natural Resources and Forestry, Science and Research Branch, Peterborough, ON. Science and Research Information Report IR-15