Abstract
Abstract
Background
Nanoscale zero-valent iron (nZVI) is commonly used for remediation of groundwater contaminated by chlorinated ethenes (CEs); however, its long-term reactivity and subsurface transport are limited. A novel nZVI–AC material, consisting of colloidal activated carbon (AC) with embedded nZVI clusters, was developed with the aim of overcoming the limitations of nZVI alone.
Results
Application of a limited amount of nZVI–AC to an oxic, nitrate-rich, highly permeable quaternary aquifer triggered time-limited transformation of CEs, with noticeable involvement of reductive dechlorination. Reductive dechlorination of CEs was dominantly abiotic, as an increase in the concentration of vinyl chloride (VC) and ethene did not coincide with an increase in the abundance of reductive biomarkers for complete dechlorination of CEs (Dehalococcoides, Dehalogenimonas, VC reductase genes vcrA and bvcA). Application of nZVI–AC under unfavourable hydrochemical conditions resulted in no dramatic change in the microbial community, the reducing effect resulting in temporal proliferation of nitrate and iron reducers only. At a later stage, generation of reduced iron induced an increase in iron-oxidizing bacteria. High concentrations and a continuous mass influx of competing electron acceptors (nitrate and dissolved oxygen) created unfavourable conditions for sulphate-reducers and organohalide-respiring bacteria, though it allowed the survival of aerobic microorganisms of the genera Pseudomonas, Polaromonas and Rhodoferax, known for their ability to assimilate VC or cis-1,2-dichloroethene. A potential for aerobic oxidative degradation of CE metabolites was also indicated by detection of the ethenotroph functional gene etnE.
Conclusions
This pilot study, based on the application of nZVI–AC, failed to provide a sustainable effect on CE contamination; however, it provided valuable insights into induced hydrogeochemical and microbial processes that could help in designing full-scale applications.
Funder
FP7 Environment
Ministerstvo Školství, Mládeže a Tělovýchovy
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献