Laboratory study of the effects of flexible vegetation on solute diffusion in unidirectional flow

Author:

Lou ShaORCID,Wang Hao,Liu Hongzhe,Zhong Guihui,Radnaeva Larisa Dorzhievna,Nikitina Elena,Ma Gangfeng,Liu Shuguang

Abstract

Abstract Background Flexible vegetation is an important part of the riverine ecosystem, which can reduce flow velocity, change turbulence structure, and affect the processes of solute transport. Compared with the flow with rigid vegetation, which has been reported in many previous studies, bending of flexible vegetation increases the complexity of the flow–vegetation–solute interactions. In this study, laboratory experiments are carried out to investigate the influence of flexible vegetation on solute transport, and methods for estimating the lateral and longitudinal diffusion coefficients in the rigid vegetated flow are examined for their applications to the flow with flexible vegetation. Results The experimental observations find that vegetation can significantly reduce flow velocity, and the Manning coefficient increases with increasing vegetation density and decreases with inflow discharge. Under all the cases, the vertical peak of the solute concentration moves towards the bottom bed along the flow, and the values of vertical peak concentration longitudinally decreases from the injection point. The lateral diffusion coefficients Dy increase with vegetation density, while the longitudinal diffusion coefficients DL are opposite. Both Dy and DL increase with the inflow discharge. To estimate the Dy and DL in the flow with flexible vegetation, an effective submerged vegetation height considering vegetation bending is incorporated in the methods proposed for flow with rigid vegetation (Lou et al. Environ Sci Eur 32:15, 2020). The modified approach can well predict the diffusion coefficients in the experiments with the relative errors in the range of 5%–12%. Conclusions The methods proposed in this study can be used to estimate the lateral and longitudinal diffusion coefficients in flows through both rigid and flexible vegetations using the effective submerged vegetation height.

Funder

Natural Science Foundation of China

International Cooperation Program of Shanghai Innovation Action Plan

Shanghai Peak Discipline Program for Civil Engineering School Tongji University

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3