Flow Characteristics in Partly Vegetated Channels: An Experimental Investigation

Author:

Ben Meftah Mouldi1ORCID,Bhutto Danish Ali2,De Padova Diana1ORCID,Mossa Michele1ORCID

Affiliation:

1. Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy

2. Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy

Abstract

In this study, we attempt to experimentally investigate the flow turbulence structure in a partly vegetated channel. To achieve the objective of this study, we conducted extensive measurements of flow velocities within and outside the vegetated area, where the flow is fully developed. The experiments were conducted in a very large channel at the Coastal Engineering Laboratory of the Department of Civil, Environmental, Building Engineering and Chemistry at the Polytechnic University of Bari, Italy. The instantaneous three flow velocity components were accurately measured using a 3D-Acoustic Doppler Velocimeter (ADV)-Vectrino system at high frequency. Flow behaviors through the vegetated area, at the interface, and in the unobstructed area were analyzed via time-averaged velocities, turbulence intensity, correlation properties, spectral analysis, and vortex identification. Experimental results showed the development of three distinct characteristic flow zones: (i) a vegetated area of low streamwise velocity, high turbulence intensities, dominant inward interactions, and more intense power spectrum, (ii) a shear layer zone of increasing streamwise velocity, more enhanced transverse flow motion, exponential decrease in turbulence intensities, and frequent ejection and/or outward interaction events, and (iii) a free-stream zone of higher and almost constant streamwise velocity, lower turbulence intensities, frequent sweep and/or inward interaction events, and less intense streamwise power spectrum. The results brought further insights into the flow behaviors in these characteristic flow zones. The extensive and detailed measured data can provide a basis for improving and calibrating numerical simulations of partly vegetated channels.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3