Bracken growth, toxin production and transfer from plant to soil: a 2-year monitoring study

Author:

García-Jorgensen Daniel B.ORCID,Diamantopoulos EfstathiosORCID,Kisielius VaidotasORCID,Rosenfjeld MetteORCID,Rasmussen Lars H.ORCID,Strobel Bjarne W.ORCID,Hansen Hans Chr. B.ORCID

Abstract

Abstract Background Bracken fern (Pteridium aquilinum) produces several toxic glycosides, of which ptaquiloside (PTA) is the most well documented. PTA is released from bracken to soil and leaches to surface water and to groundwater. This study presents the first comprehensive monitoring study of bracken biomass, PTA content in the biomass, release by precipitation and concentrations in soil solution at 50 cm depth. Laboratory experiments were carried out to estimate the degradation kinetics of PTA in different soil horizons and moisture contents. Results The PTA concentration in bracken was highest at the earliest development stages of the plant, i.e., May, declining through the growing season until negligible contents at senescence. The maximum seasonal PTA content in the canopy peaked in early summer, with values up to 1600 mg m−2. Results show that on average 0.2% of the PTA present in the canopy is washed per mm of incident rain, resulting in up to 13.1 mg PTA m−2 being washed off during single rain events. Once in the soil, PTA dissipates rapidly showing a half-lives ranging from 3.3 to 73 h with observed degradation rates showing a tenfold decrease with soil depths increasing from top soil to 25 cm soil depth. Concentrations of PTA in soil solution were positively correlated with the content of PTA in the canopy, with maximum pore water concentrations up to 4,820 ng L−1 during a pulse event taking place in July 2019. Conclusions The production of PTA in bracken was found to be proportional to biomass growth, while the mass of PTA being released is a function of volume and intensity of precipitation, as well as the bracken development stage. Leaching of PTA takes place in the form of pulses linked to precipitation events, with concentrations in the soil solution exceeding levels which are known to pose a risk to human health.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3