Bioanalytical screening of low levels of dioxins and dioxin-like PCBs in pig meat (pork) for checking compliance with EU maximum and action levels using highly sensitive “third generation” recombinant H4L7.5c2 rat hepatoma cells
-
Published:2021-03-18
Issue:1
Volume:33
Page:
-
ISSN:2190-4707
-
Container-title:Environmental Sciences Europe
-
language:en
-
Short-container-title:Environ Sci Eur
Author:
Haedrich JohannesORCID, Stumpf Claudia, Denison Michael S.
Abstract
Abstract
Background
Low maximum and action levels set by the European Union for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in pig meat (pork) have led to a demand for reliable and cost-effective bioanalytical screening methods implemented upstream of gas chromatography/high-resolution mass spectrometry confirmatory technology, that can detect low levels of contamination in EU-regulated foods with quick turn-around times.
Results
Based on the Chemically Activated LUciferase gene eXpression (CALUX) bioassay, extraction and clean-up steps were optimized for recovery and reproducibility within working ranges significantly lower than in current bioassays. A highly sensitive “3rd generation” recombinant rat hepatoma cell line (H4L7.5c2) containing 20 dioxin responsive elements was exposed to pork sample extracts, and their PCDD/Fs and DL-PCBs levels were evaluated by measuring luciferase activity. The method was validated according to the provisions of Commission Regulation (EU) 2017/644 of 5 April 2017 with spiking experiments performed selectively for PCDD/Fs and DL-PCBs and individual calibration for PCDD/Fs, DL-PCBs and the calculated sum of PCDD/Fs and DL-PCBs. The resulting performance parameters met all legal specifications as confirmed by re-calibration using authentic samples. Cut-off concentrations for assessing compliance with low maximum levels and action levels set for PCDD/Fs and DL-PCBs within a range of 0.50–1.25 pg WHO-TEQ/g fat were derived, ensuring low rates of false-compliant results (ß-error < 1%) and keeping the rate of false-noncompliant results well under control (α-error < 12%).
Conclusions
We present a fast and efficient bioanalytical routine method validated according to the European Union’s legal requirements on the basis of authentic samples, allowing the analyst to reliably identify pork samples and any other EU-regulated foods of animal origin suspected to be noncompliant with a high level of performance and turn-around times of 52 h. This was facilitated in particular by a quick and efficient extraction step followed by selective clean-up, use of a highly sensitive “3rd generation” H4L7.5c2 recombinant rat hepatoma cell CALUX bioassay, and optimized assay performance with improved calibrator precision and reduced lack-of-fit errors. New restrictions are proposed for the calibrator bias and the unspecific background contribution to reportable results. The procedure can utilize comparably small sample amounts and allows an annual throughput of 840–1000 samples per lab technician. The described bioanalytical method contributes to the European Commission's objective of generating accurate and reproducible analytical results according to Commission Regulation (EU) 2017/644 across the European Union.
Funder
National Institute for Environmental Health Sciences Chemisches und Veterinäruntersuchungsamt Freiburg
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Safe S (1990) Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 21:51–88 2. White SS, Birnbaum LS (2009) An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(4):197–211 3. Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B (2011) Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 124:1–22 4. Aylward LL, Brunet RC, Carrier G, Hays SM, Cushing CA, Needham LL, Patterson DG Jr, Gerthoux PM, Brambilla P, Mocarelli P (2005) Concentration-dependent TCDD elimination kinetics in humans: toxicokinetic modeling for moderately to highly exposed adults from Seveso, Italy, and Vienna, Austria, and impact on dose estimates for the NIOSH cohort. Environ Epidemiol 15(1):51–65 5. Van den Berg M, Birnbaum L, Bosveld AT, Brunstrom B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, van Leeuwen FX, Liem AK, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T (1998) Toxic equivalency factors TEFs for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|