Author:
Katre Gouri,Joshi Chirantan,Khot Mahesh,Zinjarde Smita,RaviKumar Ameeta
Abstract
Abstract
Single cell oils (SCOs) accumulated by oleaginous yeasts have emerged as potential alternative feedstocks for biodiesel production. As lipid accumulation is species and substrate specific, selection of an appropriate strain is critical. Five strains of Y. lipolytica, a known model oleaginous yeast, were investigated to explore their potential for biodiesel production when grown on glucose and inexpensive wastes. All the strains were found to accumulate > 20% (w/w) of their dry cell mass as lipids with neutral lipid as the major fraction when grown on glucose and on wastes such as waste cooking oil (WCO), waste motor oil (WMO). However, amongst them, Y. lipolytica NCIM 3589, a tropical marine yeast, exhibited a maximal lipid/biomass coefficient, YL/X on 30 g L-1 glucose (0.29 g g-1) and on 100 g L-1 WCO (0.43 g g-1) with a high content of saturated and monounsaturated fatty acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties of strain 3589 when grown on glucose and WCO, such as density (0.81 and 1.04 g cm-3), viscosity (4.44 and 3.6 mm2 s-1), SN (190.81 and 256), IV (65.7 and 37.8) and CN (56.6 and 50.8) are reported for the first time for Y. lipolytica and correlate well with specified standards. Thus, the SCO of oleaginous tropical marine yeast Y. lipolytica NCIM 3589 could be used as a potential feedstock for biodiesel production.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference50 articles.
1. Amaretti A, Raimondi S, Sala M, Roncaglia L, Lucia M, Leonardi A, Rossi M: Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact 2010, 9: 73.
2. Andre A, Chatzifragkou A, Diamantopoulou P, Sarris D, Philippoussis A, Galiotou-Panayotou M, Komaitis M, Papanikolaou S: Biotechnological conversions of bio-diesel derived crude glycerol by Y. lipolytica strains. Eng Life Sci 2009,9(6):468–478. 10.1002/elsc.200900063
3. AOCS Method Ce 1–62: Fatty acid composition by Gas Chromatography. In Official methods of analysis of AOAC. 18th edition. Edited by: Gaithersburg FD. Maryland AOAC International; 2005.
4. Azam MM, Waris A, Nahar NM: Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg 2005, 29: 293–302. 10.1016/j.biombioe.2005.05.001
5. Bankar AV, Kumar AR, Zinjarde SS: Environmental and industrial applications of Y. lipolytica . Appl Microbiol Biotechnol 2009, 84: 847–865. 10.1007/s00253-009-2156-8
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献