Fighting reviewer fatigue or amplifying bias? Considerations and recommendations for use of ChatGPT and other large language models in scholarly peer review

Author:

Hosseini MohammadORCID,Horbach Serge P. J. M.ORCID

Abstract

Abstract Background The emergence of systems based on large language models (LLMs) such as OpenAI’s ChatGPT has created a range of discussions in scholarly circles. Since LLMs generate grammatically correct and mostly relevant (yet sometimes outright wrong, irrelevant or biased) outputs in response to provided prompts, using them in various writing tasks including writing peer review reports could result in improved productivity. Given the significance of peer reviews in the existing scholarly publication landscape, exploring challenges and opportunities of using LLMs in peer review seems urgent. After the generation of the first scholarly outputs with LLMs, we anticipate that peer review reports too would be generated with the help of these systems. However, there are currently no guidelines on how these systems should be used in review tasks. Methods To investigate the potential impact of using LLMs on the peer review process, we used five core themes within discussions about peer review suggested by Tennant and Ross-Hellauer. These include 1) reviewers’ role, 2) editors’ role, 3) functions and quality of peer reviews, 4) reproducibility, and 5) the social and epistemic functions of peer reviews. We provide a small-scale exploration of ChatGPT’s performance regarding identified issues. Results LLMs have the potential to substantially alter the role of both peer reviewers and editors. Through supporting both actors in efficiently writing constructive reports or decision letters, LLMs can facilitate higher quality review and address issues of review shortage. However, the fundamental opacity of LLMs’ training data, inner workings, data handling, and development processes raise concerns about potential biases, confidentiality and the reproducibility of review reports. Additionally, as editorial work has a prominent function in defining and shaping epistemic communities, as well as negotiating normative frameworks within such communities, partly outsourcing this work to LLMs might have unforeseen consequences for social and epistemic relations within academia. Regarding performance, we identified major enhancements in a short period and expect LLMs to continue developing. Conclusions We believe that LLMs are likely to have a profound impact on academia and scholarly communication. While potentially beneficial to the scholarly communication system, many uncertainties remain and their use is not without risks. In particular, concerns about the amplification of existing biases and inequalities in access to appropriate infrastructure warrant further attention. For the moment, we recommend that if LLMs are used to write scholarly reviews and decision letters, reviewers and editors should disclose their use and accept full responsibility for data security and confidentiality, and their reports’ accuracy, tone, reasoning and originality.

Funder

National Center for Advancing Translational Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3