Abstract
Abstract
Objectives
Extensive efforts have been made to characterize the rumen microbiome under various conditions. However, few studies have addressed the long-term impacts of ruminal microbiome dysbiosis and the extent of host control over microbiome stability. These data can also inform host-microbial symbioses. The objective was to develop preliminary data to measure the changes that occur in the rumen bacterial communities following a rumen content exchange to understand the effects major perturbations may impart upon the rumen microbiome, which may be host-driven.
Data description
We report here an initial rumen content exchange between two SimAngus (Simmental/Angus) non-pregnant, non-lactating cows of ~ 6 years of age weighing 603.4 ± 37.5 kg. To measure bacterial community succession and acclimation following the exchange, rumen content was collected via rumen cannula at the beginning of the study immediately prior to and following the rumen content exchange, and weekly for 12 weeks. The V4 hypervariable region of the 16S rRNA gene was targeted for DNA sequencing and bacterial analysis. Over 12 weeks, numerous genera and diversity varied, before partial return to pre-exchange metrics. These preliminary data help support potential host control for the rumen microbiome, aiding in efforts to define bovine host-microbe relationships.
Funder
USDA National Institute of Food and Agriculture, Hatch/Multistate Project
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference22 articles.
1. Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci Adv. 2019;5(7):eaav8391.
2. Fang L, Sahana G, Su G, Yu Y, Zhang S, Lund MS, et al. Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle. Sci Rep. 2017;7(1):1–16.
3. VandeHaar MJ, Armentano LE, Weigel K, Spurlock DM, Tempelman RJ, Veerkamp R. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. J Dairy Sci. 2016;99(6):4941–54.
4. Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE. 2014;9(1):e85423.
5. Myer P, Freetly H, Wells J, Smith T, Kuehn L. Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency. J Anim Sci. 2017;95(7):3215–24.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献