Disease prediction via Bayesian hyperparameter optimization and ensemble learning

Author:

Gao Liyuan,Ding Yongmei

Abstract

Abstract Objective Early disease screening and diagnosis are important for improving patient survival. Thus, identifying early predictive features of disease is necessary. This paper presents a comprehensive comparative analysis of different Machine Learning (ML) systems and reports the standard deviation of the results obtained through sampling with replacement. The research emphasises on: (a) to analyze and compare ML strategies used to predict Breast Cancer (BC) and Cardiovascular Disease (CVD) and (b) to use feature importance ranking to identify early high-risk features. Results The Bayesian hyperparameter optimization method was more stable than the grid search and random search methods. In a BC diagnosis dataset, the Extreme Gradient Boosting (XGBoost) model had an accuracy of 94.74% and a sensitivity of 93.69%. The mean value of the cell nucleus in the Fine Needle Puncture (FNA) digital image of breast lump was identified as the most important predictive feature for BC. In a CVD dataset, the XGBoost model had an accuracy of 73.50% and a sensitivity of 69.54%. Systolic blood pressure was identified as the most important feature for CVD prediction.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3