Efficient disease identification using symptom-based ensemble models and bayes-search optimization

Author:

Indupalli Manjula Rani1ORCID,Pradeepini Gera1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India

Abstract

Symptom-based disease identification is crucial to the diagnosis of the disease at the early stage. Usage of traditional stacking and blending models i.e., with default values of the models cannot handle the multi-classification data properly. Some of the existing researchers also implemented tuning with the help of a grid search approach but it consumes more time because it checks all the possible combinations. Suppose if the model has n estimators with k values it needs to check (n*k)! elements combination, this makes the learning time high. The proposed model chooses the estimators to train the model with in a considerable amount of time using an advanced tuning technique known as “Bayes-Search” on an ensemble random forest and traditional, support vector machine. The advantage of this model is its capability to store the best evaluation metrics from the previous model and utilise them to store the new model. This model chooses the values of the estimator based on the probability of selection, which reduces the elements in search space i.e., (< (n-k)!). The proposed model defines the objective function with a minimum error rate and predicts the error rate with the selected estimators for different distributions. The model depending on the predicted value decides whether to store the value or to return the value to the optimizer. The Bayes search optimization has achieved +9.21% accuracy than the grid search approach. Among the two approaches random forest has achieved good accuracy and less loss using Bayes search with cross-validation.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3