Abstract
AbstractThe recirculating planetary roller screw mechanism (RPRSM) is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers. In this paper, firstly, the design method of RPRSM nut threadless area is proposed, and the equations related to the structural parameters of nut threadless area are derived. On this basis, the cross-section design method of roller, screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller. By adjusting the gap between the two beveled edges and that between the arc and the beveled edge, the accuracy of the thread engagements between the screw/nut and the roller can be improved. Secondly, to ensure the engagements of the screw/nut and the roller, the distance equation from the center surface of the different rollers to the end surface of cam ring is given. Thirdly, combined with the working principle and structural composition of RPRSM, the component model is established according to its relevant structural parameters, and the virtual assembly is completed. Finally, the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics. The dynamic characteristic is analyzed, and the simulated values are compared with the theoretical values. The results show that the contact forces between the screw/nut and the roller are sinusoidal, mainly due to the existence of a small gap between the roller and the carrier. The maximum collision forces between the roller and cam ring are independent from load magnitude. Normally, the collision force between the roller and the carrier increases as the load increases. When RPRSM is in the transmission process, the roller angular speed in nut threadless area begins to appear abruptly, and the position of the maximum change is at the contact between the roller and the convex platform of cam ring. The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research, as well as a reference for overall performance optimization.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Inner Mongolia
Inner Mongolia Science and Technology Project
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference30 articles.
1. G Qiao, G Liu, Z H Shi, et al. A review of electromechanical actuators for more/all electric aircraft systems. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2018, 232(22): 4128–4151.
2. F Lisowski. The specific dynamic capacity of a planetary roller screw with random deviations of a thread pitch. Journal of Theoretical and Applied Mechanics, 2017, 55(3): 991–1001.
3. Y Q Liu, Y Shang, J S Wang. Mathematical analysis of the meshing performance of planetary roller screws applying different roller thread shapes. Advances in Mechanical Engineering, 2017, 9(5): 1–11.
4. X J Fu, G Liu, S J Ma, et al. An efficient method for the dynamic analysis of planetary roller screw mechanism. Mechanism and Machine Theory, 2020, 150: 1–15.
5. A Andrade, D Nicolosi, J Lucchi, et al. Auxiliary total artificial heart: a compact electromechanical artificial heart working simultaneously with the natural heart. Artificial Organs, 1999, 23(9): 876–880.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献