Abstract
AbstractParking difficulties have become a social issue that people have to solve. Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents. The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method (RF-LNMPC) in order to improve the overall path tracking accuracy in parking conditions. Firstly, A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively. Secondly, the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization, of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution. Thirdly, the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented. The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically. Finally, the proposed RF-LNMPC is implemented on a self-driving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions. The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
Funder
National Key R&D Program of China
NSF of China
Hunan Provincial Natural Science Foundation of China
State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals
Publisher
Springer Science and Business Media LLC