Comparative Study of the Rock-breaking Mechanism of a Disc Cutter and Wedge Tooth Cutter by Discrete Element Modelling

Author:

Jiang Hua,Zhao Huiyan,Zhang Xiaoyan,Jiang Yusheng,Zheng Yaofu

Abstract

AbstractThe operation of a shield tunnel boring machine (TBM) in a high-strength hard rock stratum results in significant cutter damage, adversely affecting the thrust and torque of the cutter head. Therefore, it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock. In this paper, the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No. 8 was investigated using the discrete element method and theoretical analysis. The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC3D, and the rock-breaking degree, stress of the cutter, and rock-breaking specific energy were analyzed. The rock damage caused by the cutter in a specific section was divided into three stages: the advanced influence, crushing, and stabilizing stages. The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions. The disc cutter (wedge tooth cutter) has the highest rock-breaking efficiency at a cutter spacing of 100 mm (110 mm) and a penetration depth of 8 mm (10 mm), and the rock-breaking specific energy is 11.48 MJ/m3 (12.05 MJ/m3). Therefore, two types of cutters with different penetration depths or cutter spacing should be considered. The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield. The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.

Funder

National Natural Science Foundation of China

Major Achievements Transformation and Industrialization Projects of Central Universities in Beijing

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3