A Study on the Rock-Breaking Characteristics of an Arcing-Blade Cutter under Different Cutting Parameters

Author:

Ma Zhao12,Ye Junjie1,Zhang Xin2,Ye Wenhua1

Affiliation:

1. School of Mechanical and Electronical Engineering, Xidian University, Xi’an 710071, China

2. Shanxi Tiandi Coal Mining Machinery Co., Ltd., Taiyuan 030032, China

Abstract

To analyze the rock-breaking characteristics of an arcing-blade cutter in cutting red sandstone, a two-cutter cutting model was established based on the finite element method. Then, the cutting processes of the arcing-blade cutter at penetrations of 2 mm, 4 mm, and 6 mm with different cutter spacings were investigated, and the changing rules of the rock-breaking load, rock crushing state, and rock-breaking efficiency were obtained. Subsequently, the obtained simulation results were validated through linear cutting experiments. The research results showed that, as the penetration of the arcing-blade cutter increased, the rock-breaking load also increased; specifically, under 2 mm penetration, the rock-breaking load remained stable, irrespective of the cutter spacing. However, under 4 mm and 6 mm penetration, the vertical and rolling force increased and then stabilized with an increase in the cutter spacing, while the lateral force decreased and then stabilized, attributed to the synergistic effect between the cutters. At 2 mm penetration, the absence of interaction between the cutting of two cutters in sequence resulted in two separate crushed areas on the rock surface. However, at 4 mm and 6 mm penetration, the rock ridge could be crushed under a smaller cutter spacing. Meanwhile, with an increase in the cutter spacing, the synergistic effect between the cutters diminished, causing the rock ridge between two cuttings to remain uncrushed. The specific energy at the 4 mm and 6 mm penetrations decreased initially with an increase in the cutter spacing, then increased, and eventually stabilized. The optimal cutter spacings at these penetrations were determined as 50 mm and 60 mm, respectively. Conversely, at 2 mm penetration, the specific energy remained almost unchanged with an increase in the cutter spacing, maintaining at a high level and resulting in a low efficiency in cutting rock.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3