Motion Planning for Autonomous Driving with Real Traffic Data Validation

Author:

Chu Wenbo,Yang Kai,Li Shen,Tang XiaolinORCID

Abstract

AbstractAccurate trajectory prediction of surrounding road users is the fundamental input for motion planning, which enables safe autonomous driving on public roads. In this paper, a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method. To begin with, a trajectory prediction model is established based on the graph neural network (GNN) that is trained utilizing the INTERACTION dataset. Then, the validated trajectory prediction model is used to predict the future trajectories of surrounding road users, including pedestrians and vehicles. In addition, a GNN prediction model-enabled motion planner is developed based on the model predictive control technique. Furthermore, two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach, i.e., merging and roundabout scenarios. The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.

Funder

Nature Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3