Effects of Cover Sheets on the Nugget Growth and Fracture Behavior of Resistance Spot Welded Q&P980 Steel Joints

Author:

Ling Zhanxiang,Chen Ting,Kong Liang,Wang Min

Abstract

AbstractThe resistance spot weldability of galvanized ultra-high-strength steels is not satisfied, the joints are prone to interfacial fracture and the weldable current range is narrow. To solve the problems, a novel method called resistance spot welding with double-sided cover sheets was introduced to weld a galvanized Q&P980 steel with the thickness of 1.2 mm. Two thin SPCC mild steel sheets were chosen as cover sheets and were placed symmetrically at both sides between the Q&P980 steels and the electrodes, then the RSW process was carried out. Compared with the traditional RSW method, the joints obtained by using the novel method achieved larger tensile shear strength and energy absorption, which increased by 26.9% and 52.6%, respectively. With increasing the welding current, the failure mode transferred from interfacial fracture to nugget pull-out fracture or base metal tearing fracture. By contrast, the joints always showed interfacial fracture without cover sheets. The improvement of the joint performance was mainly attributed to the enlargement of the nugget. With the help of finite element simulation, it was found that the cover sheets helped increase the contact area and reduced the current density during welding, which postponed the expulsion, and a larger area could be evenly heated. The application of the novel method can be easily extended to the resistance spot welding of other ultra-high-strength steels with various thicknesses.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3