Lap-Shear Performance of Weld-Bonded Mg Alloy and Austenitic Stainless Steel in Three-Sheet Stack-Up

Author:

Manladan Sunusi Marwana,Hamza Mukhtar FatihuORCID,Ramesh Singh,Luo Zhen

Abstract

AbstractWith the growing interest in utilizing Mg and austenitic stainless steel (ASS) in the automotive sector, joining them together in three-sheet configuration is inevitable. However, achieving this task presents considerable challenges due to the large differences in their physical, metallurgical and mechanical properties. To overcome these challenges, the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated. The nugget formation, interface characteristics, microstructure and mechanical properties of the joints were investigated. The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone. On the other hand, a metallurgical bond was formed at the ASS/ASS interface. The Mg nugget microstructure exhibited fine columar grains composed predominantly of primary α-Mg grains along with a eutectic mixture of α-Mg and β-Mg17Al12. The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite, with some equiaxed dendritic grains formed at the centerline of the joint. The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J, respectively (the conventional RSW joints failed with minimal or no load application). The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure (part of the Mg nugget was pulled out of the Mg sheet). Both failure modes were accompanied by cohesive failure in the adhesive zone.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Deanship of Scientific Research, Prince Sattam bin Abdulaziz University

Publisher

Springer Science and Business Media LLC

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3