Power Consumption Characteristics Research on Mobile System of Electrically Driven Large-Load-Ratio Six-Legged Robot

Author:

Zhuang HongchaoORCID,Wang Ning,Gao Haibo,Deng Zongquan

Abstract

AbstractThe electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration. However, due to the particularity of its parallel structure, the effective utilization rate of energy is not high, which has become an important obstacle to its practical application. To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability. Based on the configuration and walking modes of robot, the mathematical model of the power consumption of mobile system is set up. In view of the tripod gait is often selected for the six-legged robots, the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot's statically indeterminate problem and constructing the equal force distribution. Then, the power consumption of robot mobile system is solved under different working conditions. The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint, body height, and span. The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption. According to the walking experiments of prototype, the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio, body height, and span. Then, the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system. The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.

Funder

National Natural Science Foundation of China

Industry University Cooperation Collaborative Education Project of the Department of Higher Education of the Ministry of Education of China

Doctor Startup Projects of TUTE of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3