Tribological Mechanism of Graphene and Ionic Liquid Mixed Fluid on Grinding Interface under Nanofluid Minimum Quantity Lubrication

Author:

Wang Dexiang,Zhang Yu,Zhao Qiliang,Jiang Jingliang,Liu Guoliang,Li ChangheORCID

Abstract

AbstractGraphene has superhigh thermal conductivity up to 5000 W/(m·K), extremely thin thickness, superhigh mechanical strength and nano-lamellar structure with low interlayer shear strength, making it possess great potential in minimum quantity lubrication (MQL) grinding. Meanwhile, ionic liquids (ILs) have higher thermal conductivity and better thermal stability than vegetable oils, which are frequently used as MQL grinding fluids. And ILs have extremely low vapor pressure, thereby avoiding film boiling in grinding. These excellent properties make ILs also have immense potential in MQL grinding. However, the grinding performance of graphene and ionic liquid mixed fluid under nanofluid minimum quantity lubrication (NMQL), and its tribological mechanism on abrasive grain/workpiece grinding interface, are still unclear. This research firstly evaluates the grinding performance of graphene and ionic liquid mixed nanofluids (graphene/IL nanofluids) under NMQL experimentally. The evaluation shows that graphene/IL nanofluids can further strengthen both the cooling and lubricating performances compared with MQL grinding using ILs only. The specific grinding energy and grinding force ratio can be reduced by over 40% at grinding depth of 10 μm. Workpiece machined surface roughness can be decreased by over 10%, and grinding temperature can be lowered over 50 ℃ at grinding depth of 30 μm. Aiming at the unclear tribological mechanism of graphene/IL nanofluids, molecular dynamics simulations for abrasive grain/workpiece grinding interface are performed to explore the formation mechanism of physical adsorption film. The simulations show that the grinding interface is in a boundary lubrication state. IL molecules absorb in groove-like fractures on grain wear flat face to form boundary lubrication film, and graphene nanosheets can enter into the grinding interface to further decrease the contact area between abrasive grain and workpiece. Compared with MQL grinding, the average tangential grinding force of graphene/IL nanofluids can decrease up to 10.8%. The interlayer shear effect and low interlayer shear strength of graphene nanosheets are the principal causes of enhanced lubricating performance on the grinding interface. EDS and XPS analyses are further carried out to explore the formation mechanism of chemical reaction film. The analyses show that IL base fluid happens chemical reactions with workpiece material, producing FeF2, CrF3, and BN. The fresh machined surface of workpiece is oxidized by air, producing NiO, Cr2O3 and Fe2O3. The chemical reaction film is constituted by fluorides, nitrides and oxides together. The combined action of physical adsorption film and chemical reaction film make graphene/IL nanofluids obtain excellent grinding performance.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Shandong Province

111 project

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3