Towards Sustainable Grinding of Difficult-to-Cut Alloys—A Holistic Review and Trends

Author:

Qian Ning,Chen Jiajia,Khan Aqib Mashood,Zhao Biao,Chen Yurong,Ding WenfengORCID,Fu Yucan,Xu Jiuhua

Abstract

AbstractGrinding, a critical precision machining process for difficult-to-cut alloys, has undergone continual technological advancements to improve machining efficiency. However, the sustainability of this process is gaining heightened attention due to significant challenges associated with the substantial specific grinding energy and the extensive heat generated when working with difficult-to-cut alloys, renowned for their exceptional physical and mechanical properties. In response to these challenges, the widespread application of massive coolant in manufacturing industries to dissipate grinding heat has led to complex post-cleaning and disposal processes. This, in turn, has resulted in issues such as large energy consumption, a considerable carbon footprint, and concerns related to worker health and safety, which have become the main factors that restrict the development of grinding technology. This paper provides a holistic review of sustainability in grinding difficult-to-cut alloys, encompassing current trends and future directions. The examination extends to developing grinding technologies explicitly tailored for these alloys, comprehensively evaluating their sustainability performance. Additionally, the exploration delves into innovative sustainable technologies, such as heat pipe/oscillating heat pipe grinding wheels, minimum quantity lubrication, cryogenic cooling, and others. These groundbreaking technologies aim to reduce dependence on hazardous coolants, minimizing energy and resource consumption and carbon emissions associated with coolant-related or subsequent disposal processes. The essence of these technologies lies in their potential to revolutionize traditional grinding practices, presenting environmentally friendly alternatives. Finally, future development trends and research directions are put forward to pursue the current limitation of sustainable grinding for difficult-to-cut alloys. This paper can guide future research and development efforts toward more environmentally friendly grinding operations by understanding the current state of sustainable grinding and identifying emerging trends.

Funder

National Natural Science Foundation of China

Youth Talent Support Project of Jiangsu Provincial Association of Science and Technology

Science Center for Gas Turbine Project

Fund of Prospective Layout of Scientific Research for the Nanjing University of Aeronautics and Astronautics

Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3