Abstract
AbstractAutonomous vehicles require safe motion planning in uncertain environments, which are largely caused by surrounding vehicles. In this paper, a driving environment uncertainty-aware motion planning framework is proposed to lower the risk of position uncertainty of surrounding vehicles with considering the risk of rollover. First, a 4-degree of freedom vehicle dynamics model, and a rollover risk index are introduced. Besides, the uncertainty of surrounding vehicles' position is processed and propagated based on the Extended Kalman Filter method. Then, the uncertainty potential field is established to handle the position uncertainty of autonomous vehicles. In addition, the model predictive controller is designed as the motion planning framework which accounts for the rollover risk, the position uncertainty of the surrounding vehicles, and vehicle dynamic constraints of autonomous vehicles. Furthermore, two edge cases, the cut-in scenario, and merging scenario are designed. Finally, the safety, effectiveness, and real-time performance of the proposed motion planning framework are demonstrated by employing a hardware-in-the-loop experiment bench.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Natural Science Foundation of Chongqing, China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献