Abstract
AbstractCurrent research on quadrotor modeling mainly focuses on theoretical analysis methods and experimental methods, which have problems such as weak adaptability to the environment, high test costs, and long durations. Additionally, the PID controller, which is currently widely used in quadrotors, requires improvement in anti-interference. Therefore, the aforementioned research has considerable practical significance for the modeling and controller design of quadrotors with strong coupling and nonlinear characteristics. In the present research, an aerodynamic-parameter estimation method and an adaptive attitude control method based on the linear active disturbance rejection controller (LADRC) are designed separately. First, the motion model, dynamics model, and control allocation model of the quad-rotor are established according to the aerodynamic theory and Newton–Euler equations. Next, a more accurate attitude model of the quad-rotor is obtained by using a tool called CIFER to identify the aerodynamic parameters with large uncertainties in the frequency domain. Then, an adaptive attitude decoupling controller based on the LADRC is designed to solve the problem of the poor anti-interference ability of the quad-rotor and adjust the key control parameter b0 automatically according to the change in the moment of inertia in real time. Finally, the proposed approach is verified on a semi-physical simulation platform, and it increases the tracking speed and accuracy of the controller, as well as the anti-disturbance performance and robustness of the control system. This paper proposes an effective aerodynamic-parameter identification method using CIFER and an adaptive attitude decoupling controller with a sufficient anti-interference ability.
Funder
the National Nature Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference32 articles.
1. Róbert Szabolcsi. The quadrotor-based night watchbird UAV system used in the force protection tasks. International Conference Knowledge-Based Organization, 2015, 21(3): 170-184.
2. Omid Mofid, Saleh Mobayen. Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Transactions, 2018.
3. Lebsework Negash, Sang-Hyeon Kim, Han-Lim Choi. An eigenstructure assignment embedded unknown input observe approach for actuator fault detection in quadrotor dynamics. IFAC Papers OnLine, 2016, 49(17): 426-431.
4. Yousaeng Lee, Seungjoo Kim, Jinyong Suk, et al. System identification of an unmanned aerial vehicle from automated fight tests. AIAA-2002-2003, 2002.
5. Hanbing Li, Dawei Wu. An approach of UAV’s aerodynamic parameter identification. Flight Dynamics, 2014, 32(2): 183-188.
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献