Wasserstein bi-classifier adversarial learning network for machinery fault diagnostics

Author:

Fan Yalun1,Guo Liang1ORCID,Yu Yaoxiang1ORCID,Sun Yi1,Luo Tao1,Hou Kexin1,Li Weilin1,Gao Hongli1

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

Abstract

In industrial applications of machinery fault diagnostics, deep learning has been widely adopted to process large amounts of monitoring data. Unfortunately, due to the domain discrepancy, diagnostic models trained with source domain data suffer from degraded diagnostic performance on the target domain. To address this problem, a Wasserstein bi-classifier adversarial learning network (WBALN) is proposed. Specifically, WBALN consists of a feature extractor, two classifiers, and a discrepancy metric based on Wasserstein distance. A two-stream optimization strategy is used in the training process, which involves jointly performing bi-classifier adversarial learning and Wasserstein generative adversarial network (WGAN)-based adversarial learning. In the bi-classifier training stream, a min-max game is conducted between a discrepancy detector composed of two classifiers and the feature extractor to reduce the disparity between these classifiers. In the WGAN-based training stream, a Wasserstein adversarial discrepancy (WAD) is applied in combination with the original classifier as a domain discriminator, which achieves fault diagnosis and distribution alignment through a unified objective. This WAD enables WBALN to achieve sufficient feature alignment using the predicted discriminative information. In addition, the utilization of the nuclear-norm is useful for ensuring the determinacy and diversity of predictions. Except for ordinary domain adaptation, WBALN is also extended for challenging problems about inter-class imbalanced domain adaptation. The performance of the proposed WBALN is verified through multiple experiments on two bearing datasets.

Funder

Science and Technology Planning Project of State Administration for Market Regulation

Eyas Program Incubation Project of Zhejiang Provincial Administration for Market Regulation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3