Step-by-Step Numerical Prediction of Aerodynamic Noise Generated by High Speed Trains

Author:

Li TianORCID,Qin Deng,Zhou Ning,Zhang Weihua

Abstract

AbstractIn this paper, the unsteady flow around a high-speed train is numerically simulated by detached eddy simulation method (DES), and the far-field noise is predicted using the Ffowcs Williams-Hawkings (FW-H) acoustic model. The reliability of the numerical calculation is verified by wind tunnel experiments. The superposition relationship between the far-field radiated noise of the local aerodynamic noise sources of the high-speed train and the whole noise source is analyzed. Since the aerodynamic noise of high-speed trains is derived from its different components, a stepwise calculation method is proposed to predict the aerodynamic noise of high-speed trains. The results show that the local noise sources of high-speed trains and the whole noise source conform to the principle of sound source energy superposition. Using the head, middle and tail cars of the high-speed train as noise sources, different numerical models are established to obtain the far-field radiated noise of each aerodynamic noise source. The far-field total noise of high-speed trains is predicted using sound source superposition. A step-by-step calculation of each local aerodynamic noise source is used to obtain the superimposed value of the far-field noise. This is consistent with the far-field noise of the whole train model’s aerodynamic noise. The averaged sound pressure level of the far-field longitudinal noise measurement points differs by 1.92 dBA. The step-by-step numerical prediction method of aerodynamic noise of high-speed trains can provide a reference for the numerical prediction of aerodynamic noise generated by long marshalling high-speed trains.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Self-determined Project of State Key Laboratory of Traction Power

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3