Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network

Author:

Jin Yuhong,Hou LeiORCID,Lu Zhenyong,Chen Yushu

Abstract

AbstractThe crack fault is one of the most common faults in the rotor system, and researchers have paid close attention to its fault diagnosis. However, most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals. In this paper, a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function (RBF) network and Pattern recognition neural network (PRNN) is presented. Firstly, a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method, where the crack’s periodic opening and closing pattern and different degrees of crack depth are considered. Then, the dynamic response is obtained by the harmonic balance method. By adjusting the crack parameters, the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots. The analysis results show that the first critical speed, first subcritical speed, first critical speed amplitude, and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis. Based on this, the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input. Test results show that the proposed method has high fault diagnosis accuracy. This research proposes a crack detection method adequate for the hollow shaft rotor system, where the crack depth and position are both unknown.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National Science and Technology Major Project of China

Natural Science Foundation of Heilongjiang Province

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3