Modelling and Dynamic Analysis of an Unbalanced and Cracked Cardan Shaft for Vehicle Propeller Shaft Systems

Author:

Tchomeni Bernard XavierORCID,Alugongo Alfayo

Abstract

The vibrational behaviour of misaligned rotating machinery is described and analysed in this paper. The model, constructed based on the equations of vehicle dynamics, considered the dynamic excitation of a single Hooke’s joint. The system adopted the breathing functions from a recent publication to approximate the actual breathing mechanism of a cracked driveshaft. The study aimed to understand the transmission of a nonlinear signal from the unbalanced and cracked driveshaft to an unbalanced driven shaft via a Hooke’s joint. The governing equation of the system was established based on the energy principle and the Lagrangian approach. The instantaneous frequency (IF) identification of the cracked driveshaft was extracted based on the synchrosqueezing wavelet technique. To correlate the results, the nonlinear synchrosqueezing wavelet transforms combined with the classical waves techniques were experimentally used in various scenarios for dynamic analysis of the Cardan shaft system. The variations in the dynamic response in the form of a rising trend of higher harmonics of rotational frequency and increased level of sub-harmonic peaks in both shafts were presented as significant crack indicators. The synchrosqueezing response showed breathing crack excitation played a crucial role in the mixed faults response and caused divergence of the vibration amplitudes in the rotor’s deflections. The simulation and test results demonstrated that the driveshaft damage features impacted the transfer motion to the driven shaft and the Hooke’s joint coupling was the principal source of instability in the system. The proposed model offers new perspectives on vibration monitoring and enhancement analysis to cover complex Cardan shaft systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3