Effect of Ellipsoidal Particle Shape on Tribological Properties of Lubricants Containing Nanoparticles

Author:

Pan Ling,Li Zhi,Chen Yunhui,Lin Guobin

Abstract

AbstractAdding nanoparticles can significantly improve the tribological properties of lubricants. However, there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance. In this work, the influence of diamond nanoparticles (DNPs) on the tribological properties of lubricants is investigated through friction experiments. Additionally, the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics (MD) simulations. The results show that DNPs can drastically lower the lubricant's friction coefficient μ from 0.21 to 0.117. The shearing process reveals that as the aspect ratio (α) of the nanoparticles approaches 1.0, the friction performance improves, and wear on the wall diminishes. At the same time, the shape of the nanoparticles tends to be spherical. When 0.85 ≤ α ≤ 1.0, rolling is ellipsoidal particles' main form of motion, and the friction force changes according to a periodic sinusoidal law. In the range of 0.80 ≤ α < 0.85, ellipsoidal particles primarily exhibit sliding as the dominant movement mode. As α decreases within this range, the friction force progressively increases. The friction coefficient μ calculated through MD simulation is 0.128, which is consistent with the experimental data.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3