Study on Lubrication Characteristics of C4-Alkane and Nanoparticle during Boundary Friction by Molecular Dynamics Simulation

Author:

Zheng Xuan,Su Lihong,Deng Guanyu,Zhang Jie,Zhu Hongtao,Tieu Anh KietORCID

Abstract

Lubricant has been widely applied to reduce wear and friction between the contact surfaces when they are in relative motion. In the current study, a nonequilibrium molecular dynamics (NEMD) simulation was specifically established to conduct a comprehensive investigation on the dynamic contact between two iron surfaces in a boundary friction system considering the mixed C4-alkane and nanoparticles as lubricant. The main research objective was to explore the effects of fluid and nanoparticles addition on the surface contact and friction force. It was found that nanoparticles acted like ball bearings between the contact surfaces, leading to a change of sliding friction mode to rolling friction mode. Under normal loads, plastic deformation occurred at the top surface because nanoparticles were mainly supporting the normal load. By increasing the number of C4-alkane molecules between two contact surfaces, the contact condition has been changed from partial to full lubrication. In addition, an attractive force from the solid–liquid LJ interaction between C4-alkane and surfaces was observed at the early stage of sliding, due to the large space formed by wall surfaces and nanoparticles. The findings in this paper would be beneficial for understanding the frictional behavior of a simple lubricant with or without nanoparticles addition in a small confinement.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3