Reduced-dose and high-speed acquisition strategies for multi-dimensional electron microscopy

Author:

Saghi Zineb,Benning Martin,Leary Rowan,Macias-Montero Manuel,Borras Ana,Midgley Paul A

Abstract

AbstractMulti-dimensional electron microscopy has recently gained considerable interest thanks to the advent of microscopes with unprecedented analytical and in situ capabilities. These information-rich imaging modes, though, are often subject to long acquisition times and large data generation. In this paper, we explore novel acquisition strategies and reconstruction algorithms to retrieve reliable reconstructions from datasets that are limited in terms of both per image and tilt series angular sampling. We show that inpainting techniques are capable of restoring scanning transmission electron microscopy images in which a very restricted number of pixels are scanned, while compressed sensing tomographic reconstruction is capable of minimising artefacts due to angular subsampling. An example of robust reconstruction from data constituting a dose reduction of 10× is presented, using an organic/inorganic core-shell nanowire as a test sample. The combination of these novel acquisition schemes and image recovery strategies provides new avenues to reduced-dose and high-speed imaging.

Publisher

Springer Science and Business Media LLC

Subject

Spectroscopy,Radiology, Nuclear Medicine and imaging,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3