Affiliation:
1. Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorgánica Facultad de Ciencias Universidad de Cadiz Campus Rio San Pedro S/N, Puerto Real 11510 Cádiz Spain
Abstract
Using a nanostructured platform (a controlled‐shape nano‐oxide) and conventional wet impregnation techniques, powder‐type materials have been prepared in which atomically thin surface layers are deposited under very mild conditions. More importantly, an advanced methodology, combining energy dispersive X‐ray spectroscopy‐scanning transmission electron tomography (STEM‐EDX ET) and deep learning denoising techniques, has been developed for the 3D compositional characterization of these unique nanosystems. The complex case of LaOx‐coated CeO2 nanocubes is illustrated. For these, aberration corrected 2D STEM‐EDX evidence that ceria nanocubes become covered with a 2–4 atom‐thick layer of a La, Ce‐mixed oxide with spatially varying composition. However, STEM‐EDX ET reveals that this layer distributes unevenly, patching most of the available nanocube surface. The large flexibility and spread availability of the involved synthetic techniques enables, using the tools here developed, a wide exploration of the wealth of questions and applications of these intriguing, atomically thin, surface oxide phases.
Funder
Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
Ministerio de Ciencia e Innovación
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献