Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments

Author:

Nadig VanessaORCID,Schug David,Weissler Bjoern,Schulz Volkmar

Abstract

Abstract Background Aiming to measure the difference in arrival times of two coincident γ-photons with an accuracy in the order of 200ps, time-of-flight positron emission tomography systems commonly employ silicon photomultipliers (SiPMs) and high-resolution digitization electronics, application specific integrated circuits (ASICs). This work evaluates the performance of the TOFPET2 ASIC, released by PETsys Electronics S.A. in 2017, dependent on its configuration parameters in multi-channel coincidence measurements. Methods SiPM arrays fabricated by different vendors (KETEK, SensL, Hamamatsu, Broadcom) were tested in combination with the ASIC. Scintillator arrays featuring different reflector designs and different configurations of the TOFPET2 ASIC software parameters were evaluated. The benchtop setup used is provided with the TOFPET2 ASIC evaluation kit by PETsys Electronics S.A. Results Compared to existing studies featuring the TOFPET2 ASIC, multi-channel performance results dependent on a larger set of ASIC configuration parameters were obtained that have not been reported to this extend so far. The ASIC shows promising CRTs down to 219.9 ps in combination with two Hamamatsu S14161-3050-HS-08 SiPM arrays (128 channels read out, energy resolution 13.08%) and 216.1 ps in combination with two Broadcom AFBR-S4N44P643S SiPM arrays (32 channels read out, energy resolution 9.46%). The length of the trigger delay of the dark count suppression scheme has an impact on the ASIC performance and can be configured to further improve the coincidence resolution time. The integrator gain configuration has been investigated and allows an absolute improvement of the energy resolution by up to 1% at the cost of the linearity of the energy spectrum. Conclusion Measuring up to the time-of-flight performance of state-of-the-art positron emission tomography (ToF-PET) systems while providing a uniform and stable readout for multiple channels at the same time, the TOFPET2 ASIC is treated as promising candidate for the integration in future ToF-PET systems.

Funder

Horizon 2020

RWTH Aachen

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Readout Strategies and Asynchronous Architectures;Single-Photon Avalanche Diodes and Photon Counting Systems;2024-06-11

2. Optical crosstalk of protective cover on MPPC array for TOF PET detector;Physics in Medicine & Biology;2024-06-10

3. Wide Energetic Response of 4π Directional Gamma Detector Based on Combination of Compton Scattering and Photoelectric Effect;IEEE Transactions on Nuclear Science;2024-05

4. PET Detectors Based on Multi-Resolution SiPM Arrays;IEEE Transactions on Radiation and Plasma Medical Sciences;2024-05

5. Depth‐encoding using optical photon TOF in a prism‐PET detector with tapered crystals;Medical Physics;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3