Efficiency determination of J-PET: first plastic scintillators-based PET scanner

Author:

Sharma S.ORCID,Baran J.,Chug N.,Curceanu C.,Czerwiński E.,Dadgar M.,Dulski K.,Eliyan K.,Gajos A.,Gupta-Sharma N.,Hiesmayr B. C.,Kacprzak K.,Kapłon Ł.,Klimaszewski K.,Konieczka P.,Korcyl G.,Kozik T.,Krzemień W.,Kumar D.,Niedźwiecki Sz.,Panek D.,Parzych S.,del Rio E. Perez,Raczyński L.,Choudhary Shivani,Shopa R. Y.,Skurzok M.,Stępień E. Ł.,Tayefi F.,Tayefi K.,Wiślicki W.,Moskal P.

Abstract

Abstract Background The Jagiellonian Positron Emission Tomograph is the 3-layer prototype of the first scanner based on plastic scintillators, consisting of 192 half-metre-long strips with readouts at both ends. Compared to crystal-based detectors, plastic scintillators are several times cheaper and could be considered as a more economical alternative to crystal scintillators in future PETs. JPET is also a first multi-photon PET prototype. For the development of multi-photon detection, with photon characterized by the continuous energy spectrum, it is important to estimate the efficiency of J-PET as a function of energy deposition. The aim of this work is to determine the registration efficiency of the J-PET tomograph as a function of energy deposition by incident photons and the intrinsic efficiency of the J-PET scanner in detecting photons of different incident energies. In this study, 3-hit events are investigated, where 2-hits are caused by 511 keV photons emitted in $$e^+e^-$$ e + e - annihilations, while the third hit is caused by one of the scattered photons. The scattered photon is used to accurately measure the scattering angle and thus the energy deposition. Two hits by a primary and a scattered photon are sufficient to calculate the scattering angle of a photon, while the third hit ensures the precise labeling of the 511 keV photons. Results By comparing experimental and simulated energy distribution spectra, the registration efficiency of the J-PET scanner was determined in the energy deposition range of 70–270 keV, where it varies between 20 and 100$$\%$$ % . In addition, the intrinsic efficiency of the J-PET was also determined as a function of the energy of the incident photons. Conclusion A method for determining registration efficiency as a function of energy deposition and intrinsic efficiency as a function of incident photon energy of the J-PET scanner was demonstrated. This study is crucial for evaluating the performance of the scanner based on plastic scintillators and its applications as a standard and multi-photon PET systems. The method may be also used in the calibration of Compton-cameras developed for the ion−beam therapy monitoring and simultaneous multi-radionuclide imaging in nuclear medicine.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Study of Clinical PET Scanners With Different Geometries, Including TOF and DOI Capabilities;IEEE Transactions on Radiation and Plasma Medical Sciences;2024-07

2. Feasibility studies for imaging e+e annihilation with modular multi-strip detectors;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-05

3. Discrete symmetries tested at 10−4 precision using linear polarization of photons from positronium annihilations;Nature Communications;2024-01-02

4. Scandium Radioisotopes—Toward New Targets and Imaging Modalities;Molecules;2023-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3