Clinical and phantom validation of a deep learning based denoising algorithm for F-18-FDG PET images from lower detection counting in comparison with the standard acquisition

Author:

Bonardel Gerald,Dupont Axel,Decazes Pierre,Queneau Mathieu,Modzelewski Romain,Coulot Jeremy,Le Calvez Nicolas,Hapdey SébastienORCID

Abstract

Abstract Background PET/CT image quality is directly influenced by the F-18-FDG injected activity. The higher the injected activity, the less noise in the reconstructed images but the more radioactive staff exposition. A new FDA cleared software has been introduced to obtain clinical PET images, acquired at 25% of the count statistics considering US practices. Our aim is to determine the limits of a deep learning based denoising algorithm (SubtlePET) applied to statistically reduced PET raw data from 3 different last generation PET scanners in comparison to the regular acquisition in phantom and patients, considering the European guidelines for radiotracer injection activities. Images of low and high contrasted (SBR = 2 and 5) spheres of the IEC phantom and high contrast (SBR = 5) of micro-spheres of Jaszczak phantom were acquired on 3 different PET devices. 110 patients with different pathologies were included. The data was acquired in list-mode and retrospectively reconstructed with the regular acquisition count statistic (PET100), 50% reduction in counts (PET50) and 66% reduction in counts (PET33). These count reduced images were post-processed with SubtlePET to obtain PET50 + SP and PET33 + SP images. Patient image quality was scored by 2 senior nuclear physicians. Peak-signal-to-Noise and Structural similarity metrics were computed to compare the low count images to regular acquisition (PET100). Results SubtlePET reliably denoised the images and maintained the SUVmax values in PET50 + SP. SubtlePET enhanced images (PET33 + SP) had slightly increased noise compared to PET100 and could lead to a potential loss of information in terms of lesion detectability. Regarding the patient datasets, the PET100 and PET50 + SP were qualitatively comparable. The SubtlePET algorithm was able to correctly recover the SUVmax values of the lesions and maintain a noise level equivalent to full-time images. Conclusion Based on our results, SubtlePET is adapted in clinical practice for half-time or half-dose acquisitions based on European recommended injected dose of 3 MBq/kg without diagnostic confidence loss.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3