Non-topographical contrast enhancement in the olfactory bulb

Author:

Cleland Thomas A,Sethupathy Praveen

Abstract

Abstract Background Contrast enhancement within primary stimulus representations is a common feature of sensory systems that regulates the discrimination of similar stimuli. Whereas most sensory stimulus features can be mapped onto one or two dimensions of quality or location (e.g., frequency or retinotopy), the analogous similarities among odor stimuli are distributed high-dimensionally, necessarily yielding a chemotopically fragmented map upon the surface of the olfactory bulb. While olfactory contrast enhancement has been attributed to decremental lateral inhibitory processes among olfactory bulb projection neurons modeled after those in the retina, the two-dimensional topology of this mechanism is intrinsically incapable of mediating effective contrast enhancement on such fragmented maps. Consequently, current theories are unable to explain the existence of olfactory contrast enhancement. Results We describe a novel neural circuit mechanism, non-topographical contrast enhancement (NTCE), which enables contrast enhancement among high-dimensional odor representations exhibiting unpredictable patterns of similarity. The NTCE algorithm relies solely on local intraglomerular computations and broad feedback inhibition, and is consistent with known properties of the olfactory bulb input layer. Unlike mechanisms based upon lateral projections, NTCE does not require a built-in foreknowledge of the similarities in molecular receptive ranges expressed by different olfactory bulb glomeruli, and is independent of the physical location of glomeruli within the olfactory bulb. Conclusion Non-topographical contrast enhancement demonstrates how intrinsically high-dimensional sensory data can be represented and processed within a physically two-dimensional neural cortex while retaining the capacity to represent stimulus similarity. In a biophysically constrained computational model of the olfactory bulb, NTCE successfully mediates contrast enhancement among odorant representations in the natural, high-dimensional similarity space defined by the olfactory receptor complement and underlies the concentration-independence of odor quality representations.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3