Removal of 10-nm contaminant particles from Si wafers using CO2 bullet particles

Author:

Kim Inho,Hwang Kwangseok,Lee JinWon

Abstract

Abstract Removal of nanometer-sized contaminant particles (CPs) from substrates is essential in successful fabrication of nanoscale devices. The particle beam technique that uses nanometer-sized bullet particles (BPs) moving at supersonic velocity was improved by operating it at room temperature to achieve higher velocity and size uniformity of BPs and was successfully used to remove CPs as small as 10 nm. CO2 BPs were generated by gas-phase nucleation and growth in a supersonic nozzle; appropriate size and velocity of the BPs were obtained by optimizing the nozzle contours and CO2/He mixture fraction. Cleaning efficiency greater than 95% was attained. BP velocity was the most important parameter affecting removal of CPs in the 10-nm size range. Compared to cryogenic Ar or N2 particles, CO2 BPs were more uniform in size and had higher velocity and, therefore, cleaned CPs more effectively.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Reference16 articles.

1. SEMATECH and International Technology Roadmap for Semiconductors: 2009 Yield enhancement report and table.[http://www.itrs.net/Links/2009ITRS/Home2009.htm]

2. Rimai DS, Quesnel DJ: Fundamentals of Particle Adhesion. CA, USA: Global Press; 2001.

3. Sherman R: Carbon dioxide snow cleaning. In Particles on Surfaces 5 & 6: Detection, Adhesion and Removal. Edited by: Mittal KL. Netherlands: VSP; 1999:221–237.

4. Bakhtari K, Guldiken RO, Makaram P, Busnaina AA, Park JG: Experimental and numerical investigation of nanoparticle removal using acoustic streaming and the effect of time. J Electrochem Soc 2006, 153: G846-G850. 10.1149/1.2217287

5. Lim H, Jang D, Kim D, Lee JW, Lee J: Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process. J Applied Phys 2005, 97: 054903–054908. 10.1063/1.1857056

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3