Author:
Jeong Yonkil,Kim Chae-Woong,Park Dong-Won,Jung Seung Chul,Lee Jongjin,Shim Hee-Sang
Abstract
Abstract
The influence of Na on Cu(In,Ga)Se2 (CIGS) solar cells was investigated. A gradient profile of the Na in the CIGS absorber layer can induce an electric field modulation and significantly strengthen the back surface field effect. This field modulation originates from a grain growth model introduced by a combination of alloy-hardening and pair-annihilation probabilities, wherein the Cu supply and Na diffusion together screen the driving force of the grain boundary motion (GBM) by alloy hardening, which indicates a specific GBM pinning by Cu and Na. The pair annihilation between the ubiquitously evolving GBMs has a coincident probability with the alloy-hardening event.
PACS: 88. 40. H-, 81. 10. Aj, 81. 40. Cd,
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference24 articles.
1. Niki S, Contreras M, Repins I, Kushiya K, Ishizuka S, Matsubara K: CIGS absorbers and processes. Prog Photovolt:Res Appl 2010, 18: 453. 10.1002/pip.969
2. Yuan M, Mitzi DB, Liu W, Kellock AJ, Chey SJ, Deline VR: Optimization of CIGS-based PV device through antimony doping. Chem Mater 2010, 22: 285. 10.1021/cm903428f
3. Green MA, Emery K, Hishikawa Y, Warta W: Solar cell efficiency tables (version 37). Prog Photovolt:Res Appl 2011, 19: 84. 10.1002/pip.1088
4. Braunger D, Hariskos D, Bilger G, Rau U, Schock HW: Influence of sodium on the growth of polycrystalline Cu(In, Ga)Se2 thin films. Thin Solid Films 2000, 361–362: 161. 10.1016/S0040-6090(99)00777-4
5. Rudmann D: Effects of sodium on growth and properties of Cu(In,Ga)Se
2
thin films and solar cells. In Doctoral Thesis. Swiss Federal Institute of Technology; 2004.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献