Author:
Ma Fu Sheng,Lim Hock Siah,Zhang Vanessa Li,Ng Ser Choon,Kuok Meng Hau
Abstract
Abstract
The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the n th bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献