Relation between electrical properties of aerosol-deposited BaTiO3 thin films and their mechanical hardness measured by nano-indentation

Author:

Kim Hong-Ki,Oh Jong-Min,In Kim Soo,Kim Hyung-Jun,Lee Chang Woo,Nam Song-Min

Abstract

Abstract To achieve a high capacitance density for embedded decoupling capacitor applications, the aerosol deposition (AD) process was applied as a thin film deposition process. BaTiO3 films were fabricated on Cu substrates by the AD process at room temperature, and the film thickness was reduced to confirm the limit of the critical minimum thickness for dielectric properties. As a result, the BaTiO3 thin films that were less than 1-μm thick showed unstable electric properties owing to their high leakage currents. Therefore, to overcome this problem, the causes of the high leakage currents were investigated. In this study, it was confirmed that by comparing BaTiO3 thin films on Cu substrates with those on stainless steels (SUS) substrates, macroscopic defects and rough interfaces between films and substrates influence the leakage currents. Moreover, based on the deposition mechanism of the AD process, it was considered that the BaTiO3 thin films on Cu substrates with thicknesses of less than 1 μm are formed with chinks and weak particle-to-particle bonding, giving rise to leakage currents. In order to confirm the relation between the above-mentioned surface morphologies and the dielectric behavior, the hardness of BaTiO3 films on Cu and SUS substrates was investigated by nano-indentation. Consequently, we proposed that the chinks and weak particle-to-particle bonding in the BaTiO3 thin films with thicknesses of less than 0.5 μm on Cu substrates could be the main cause of the high leakage currents.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3