Author:
Mazzucato Simone,Royall Benjamin,Ketlhwaafetse Richard,Balkan Naci,Salmi Joel,Puustinen Janne,Guina Mircea,Smith Andy,Gwilliam Russell
Abstract
Abstract
We demonstrate for the first time the operation of GaInNAs and GaAs n-i-p-i doping solar cells with ion-implanted selective contacts. Multiple layers of alternate doping are grown by molecular beam epitaxy to form the n-i-p-i structure. After growth, vertical selective contacts are fabricated by Mg and Si ion implantation, followed by rapid thermal annealing treatment and fabrication into circular mesa cells. As means of characterisation, spectral response and illuminated current–voltage (I-V) were measured on the samples. The spectral response suggests that all horizontal layers are able to contribute to the photocurrent. Performance of the devices is discussed with interest in the n-i-p-i structure as a possible design for the GaInP/GaAs/GaInNAs tandem solar cell.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference12 articles.
1. Cotal HL, Lillingon DR, Ermer JH: Triple-junction solar cell efficiencies above 32%: the promise and challenges of their application in high-concentration-ratio PV systems. In Photovoltaic Specialists Conference: September 15–22 2000; Anchorage. IEEE, Piscataway; 2000:955–960.
2. Geisz JF, Friedman DJ: III-N-V semiconductors for solar photovoltaic applications. Semicond Sci Technol 2002, 17: 769. 10.1088/0268-1242/17/8/305
3. Kurtz R, Allerman AA, Seager CH, Sieg RH, Jones ED: Minority carrier diffusion, defects, and localization in InGaAsN, with 2% nitrogen. Appl Phys Lett 2000, 77: 400. 10.1063/1.126989
4. Honda T, Ingaki M, Suzuki H: Improvement of minority-carrier lifetime in GaAsN grown by chemical beam epitaxy. In 35th IEEE Photovoltaic Specialist Conference; June 20–25 2010; Honolulu. IEEE, Piscataway; 2010:002053–002056.
5. Nelson J: Physics of Solar Cells. Imperial College Press, London; 2003.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献