Pool boiling of nanoparticle-modified surface with interlaced wettability

Author:

Hsu Chin-Chi,Su Tsung-Wen,Chen Ping-Hei

Abstract

Abstract This study investigated the pool boiling heat transfer under heating surfaces with various interlaced wettability. Nano-silica particles were used as the coating element to vary the interlaced wettability of the surface. The experimental results revealed that when the wettability of a surface is uniform, the critical heat flux increases with the more wettable surface; however, when the wettability of a surface is modified interlacedly, regardless of whether the modified region becomes more hydrophilic or hydrophobic, the critical heat flux is consistently higher than that of the isotropic surface. In addition, this study observed that critical heat flux was higher when the contact angle difference between the plain surface and the modified region was smaller.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Reference13 articles.

1. Nukiyama S: Maximum and minimum values of heat transmitted from a metal to boiling water under atmospheric pressure. J Soc Mech Eng 1934, 37: 367–374.

2. Costello CP, Frea WJ In AIChE Preprint No. 15, Sixth U.S. National Heat Transfer Conference: August 11–14 1963. In A salient non-hydrodynamic effect on pool boiling burnout of small semi-cylindrical heaters. Boston; 1963.

3. Nishikawa K, Hasegawa S, Honda H: Studies on boiling characteristic curve. Mem Fac Engng Kyushu Univ 1967, 27: 133–154.

4. Maracy M, Winterton RHS: Hysteresis and contact angle effects in transition pool boiling of water. Int J Heat Mass Transfer 1988, 31: 1443–1449. 10.1016/0017-9310(88)90253-0

5. Dhir VK, Liaw SP: Void fraction measurements during saturated pool boiling of water on partially wetted vertical surfaces. J Heat Transfer 1989, 111: 731–738. 10.1115/1.3250744

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3