Framework for a Unified Model for Nucleate and Transition Pool Boiling

Author:

Dhir V. K.1,Liaw S. P.1

Affiliation:

1. Mechanical, Aerospace and Nuclear Engineering Department, University of California, Los Angeles, Los Angeles, CA. 90024-1597

Abstract

An area and time-averaged model for saturated pool boiling heat fluxes has been developed. In the model, which is valid in the upper end of nucleate boiling and in transition boiling, the existence of stationary vapor stems at the wall is assumed. The energy from the wall is conducted into the liquid macro/micro thermal layer surrounding the stems and is utilized in evaporation at the stationary liquid–vapor interface. The heat transfer rate into the thermal layer and the temperature distribution in it are determined by solving a two-dimensional steady-state conduction equation. The evaporation rate is given by the kinetic theory. The heater surface area over which the vapor stems exist is taken to be dry. Employing experimentally observed void fractions, not only the nucleate and transition boiling heat fluxes but also the maximum and minimum heat fluxes are predicted from the model. The maximum heat fluxes obtained from the model are valid only for surfaces that are not well wetted and includes the contact angle as one of the parameters.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3