Author:
Chang Joe-Ming,Chang Wei-Yu,Chen Fu-Rong,Tseng Fan-Gang
Abstract
Abstract
A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN.
PACS
07.79.Lh, 81.16.-c, 84.37. + q
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference19 articles.
1. Martin Y, Williams CCHK, Wickramasinghe HK: Atomic force microscope-force mapping and profiling on a sub 100-A scale. J Appl Phys 1987, 61: 4723–4729. 10.1063/1.338807
2. Stern JE, Terris BD, Mamin HJ, Rugar D: Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl Phys Lett 1988, 53: 2717–2719. 10.1063/1.100162
3. Terris BD, Sterna JE, Rugar D, Mamin HJ: Localized charge force microscopy. J Vac Sci Technol 1990, A8: 374–377.
4. Berger R, Butt HJ, Retschke MB, Weber SAL: Electrical modes in scanning probe microscopy. Macromol Rapid Commun 2009, 30: 1167–1178. 10.1002/marc.200900220
5. Bonnell DA: Electrostatic and magnetic force microscopy. In Scanning Probe Microscopy and Spectroscopy. New York: Wiley; 2001:207–210.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献