Synthesis and structure of undoped and indium-doped thermoelectric lead telluride nanoparticles

Author:

Kadel Kamal,Kumari Latha,Wang Xuewen,Li Wenzhi,Huang Jian Yu,Provencio Paula Polyak

Abstract

Abstract Undoped and indium (In)-doped lead telluride (PbTe) nanostructures were synthesized via solvothermal/hydrothermal route. The crystalline structure of the as-prepared undoped and In-doped PbTe samples was examined by X-ray diffraction (XRD) which indicated the formation of face-centered single-phase cubic crystal. A first principle calculation on indium doping shows that the indium atoms are more likely to replace lead (Pb) rather than to take the interstitial sites. Laser-induced breakdown spectroscopy (LIBS) analysis confirms that indium is incorporated into the PbTe matrix of the indium-doped PbTe samples. The effects of surfactant and synthesis temperature on the structure and morphology of the undoped PbTe were also investigated; it was found that PbTe nanostructures synthesized with the addition of surfactants exhibited uniform shapes and their size increased with the synthesis temperature.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3