Author:
Han Guiquan,Liu Yuhong,Lu Xinchun,Luo Jianbin
Abstract
Abstract
A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can ‘actively’ carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference55 articles.
1. International technology roadmap for semiconductors 2011.http://www.itrs.net/Links/2011ITRS/Home2011.htm
2. Li YZ: Microelectronic Applications of Chemical Mechanical Planarization. John Wiley & Sons, Inc., Hoboken, New Jersey; 2007.
3. Wang DH, Chiao S, Afnan M, Yih P, Rehayem M: Stress-free polishing advances copper integration with ultralow-k dielectrics. Solid State Technol 2001, 44: 101–106.
4. Tsujimura M: CMP for Cu processing. In Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications. Edited by: Shacham-Diamand Y, Datta M, Osaka T, Ohba T. Springer, New York; 2009:343–357.
5. Wada Y, Noji I, Kobata I, Kohama T, Fukunaga A, Tsujimura M: The enabling solution of Cu/low-k planarization technology. In IEEE 2005 International Interconnect Technology Conference: June 6–8 2005; Burlingame. IEEE, New York; 2005:126.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献