Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

Author:

Simon Anne,Maletz Sibylle X,Hollert Henner,Schäffer Andreas,Maes Hanna M

Abstract

Abstract To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3