Paralinguistic singing attribute recognition using supervised machine learning for describing the classical tenor solo singing voice in vocal pedagogy

Author:

Xu Yanze,Wang Weiqing,Cui Huahua,Xu Mingyang,Li MingORCID

Abstract

AbstractHumans can recognize someone’s identity through their voice and describe the timbral phenomena of voices. Likewise, the singing voice also has timbral phenomena. In vocal pedagogy, vocal teachers listen and then describe the timbral phenomena of their student’s singing voice. In this study, in order to enable machines to describe the singing voice from the vocal pedagogy point of view, we perform a task called paralinguistic singing attribute recognition. To achieve this goal, we first construct and publish an open source dataset named Singing Voice Quality and Technique Database (SVQTD) for supervised learning. All the audio clips in SVQTD are downloaded from YouTube and processed by music source separation and silence detection. For annotation, seven paralinguistic singing attributes commonly used in vocal pedagogy are adopted as the labels. Furthermore, to explore the different supervised machine learning algorithm for classifying each paralinguistic singing attribute, we adopt three main frameworks, namely openSMILE features with support vector machine (SF-SVM), end-to-end deep learning (E2EDL), and deep embedding with support vector machine (DE-SVM). Our methods are based on existing frameworks commonly employed in other paralinguistic speech attribute recognition tasks. In SF-SVM, we separately use the feature set of the INTERSPEECH 2009 Challenge and that of the INTERSPEECH 2016 Challenge as the SVM classifier’s input. In E2EDL, the end-to-end framework separately utilizes the ResNet and transformer encoder as feature extractors. In particular, to handle two-dimensional spectrogram input for a transformer, we adopt a sliced multi-head self-attention (SMSA) mechanism. In the DE-SVM, we use the representation extracted from the E2EDL model as the input of the SVM classifier. Experimental results on SVQTD show no absolute winner between E2EDL and the DE-SVM, which means that the back-end SVM classifier with the representation learned by E2E as input does not necessarily improve the performance. However, the DE-SVM that utilizes the ResNet as the feature extractor achieves the best average UAR, with an average 16% improvement over that of the SF-SVM with INTERSPEECH’s hand-crafted feature set.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Science and Technology Program of Guangzhou City

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3