Unsupervised Single-Channel Singing Voice Separation with Weighted Robust Principal Component Analysis Based on Gammatone Auditory Filterbank and Vocal Activity Detection

Author:

Li Feng12,Hu Yujun1,Wang Lingling1

Affiliation:

1. Department of Computer Science and Technology, Anhui University of Finance and Economics, Bengbu 233030, China

2. School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China

Abstract

Singing-voice separation is a separation task that involves a singing voice and musical accompaniment. In this paper, we propose a novel, unsupervised methodology for extracting a singing voice from the background in a musical mixture. This method is a modification of robust principal component analysis (RPCA) that separates a singing voice by using weighting based on gammatone filterbank and vocal activity detection. Although RPCA is a helpful method for separating voices from the music mixture, it fails when one single value, such as drums, is much larger than others (e.g., the accompanying instruments). As a result, the proposed approach takes advantage of varying values between low-rank (background) and sparse matrices (singing voice). Additionally, we propose an expanded RPCA on the cochleagram by utilizing coalescent masking on the gammatone. Finally, we utilize vocal activity detection to enhance the separation outcomes by eliminating the lingering music signal. Evaluation results reveal that the proposed approach provides superior separation outcomes than RPCA on ccMixter and DSD100 datasets.

Funder

National Natural Science Foundation of China

Innovation Support Program for Returned Overseas Students in Anhui Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3